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Abstract

Climate forecasts predict an increase in frequency and intensity of wildfires. Associations between 

health outcomes and population exposure to smoke from Washington 2012 wildfires were 

compared using surface monitors, chemical-weather models, and a novel method blending three 

exposure information sources. The association between smoke particulate matter ≤2.5 μm in 

diameter (PM2.5) and cardiopulmonary hospital admissions occurring in Washington from 1 July 

to 31 October 2012 was evaluated using a time-stratified case-crossover design. Hospital 

admissions aggregated by ZIP code were linked with population-weighted daily average 

concentrations of smoke PM2.5 estimated using three distinct methods: a simulation with the 

Weather Research and Forecasting with Chemistry (WRF-Chem) model, a kriged interpolation of 

PM2.5 measurements from surface monitors, and a geographically weighted ridge regression 

(GWR) that blended inputs from WRF-Chem, satellite observations of aerosol optical depth, and 

kriged PM2.5. A 10 μg/m3 increase in GWR smoke PM2.5 was associated with an 8% increased 

risk in asthma-related hospital admissions (odds ratio (OR): 1.076, 95% confidence interval (CI): 

1.019–1.136); other smoke estimation methods yielded similar results. However, point estimates 

for chronic obstructive pulmonary disease (COPD) differed by smoke PM2.5 exposure method: a 

10 μg/m3 increase using GWR was significantly associated with increased risk of COPD (OR: 

1.084, 95%CI: 1.026–1.145) and not significant using WRF-Chem (OR: 0.986, 95%CI: 0.931–

1.045). The magnitude (OR) and uncertainty (95%CI) of associations between smoke PM2.5 and 

hospital admissions were dependent on estimation method used and outcome evaluated. Choice of 

smoke exposure estimation method used can impact the overall conclusion of the study.
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1. Introduction

There is growing evidence that wildfires are increasing in intensity [Westerling et al., 2006; 

Langmann et al., 2009; Turetsky et al., 2011; Moritz et al., 2012], which is projected to have 

a negative impact on air quality in certain areas of the United States [Val Martin et al., 2015; 

Liu et al., 2016a]. This projected degradation of air quality due to wildfires presents 

challenges to public health. Quantification of the relationship between smoke exposure and 

population-level health outcomes would assist in the anticipation of and preparation for 

public health planning.

Previous estimates of population-level health effects from wildfire smoke exposure have 

been inferred from epidemiologic studies that have evaluated health effects of particulate air 

pollution on cardiorespiratory morbidity and mortality outcomes [Brunekreef and Holgate, 

2002; Dominici et al., 2002, 2005; Pope et al., 2002, 2009; Miller et al., 2007]. Many of 

these studies have informed and guided epidemiologic studies of wildfire smoke and 

population health, where a growing body of epidemiologic evidence consistently finds 

exposure to wildfire smoke increases risk for adverse pulmonary outcomes [Liu et al., 2015; 

Reid et al., 2016]. However, unlike the ambient air pollution studies that have found a 

relationship with adverse cardiovascular outcomes [Miller et al., 2007], the current wildfire 

smoke studies have found inconsistent associations with cardiovascular outcomes [Liu et al., 

2015; Reid et al., 2016].

A possible source of bias in these epidemiologic wildfire smoke studies is exposure 

misclassification. In their review of wildfire smoke and population health, Liu et al. suggest 

that improvement is needed in the assessment and quantification of smoke exposure [Liu et 

al., 2015]. Existing population-based studies have primarily used three types of methods 

when assessing the relationship between smoke exposure and health: measurements from 

surface air pollutant monitors, measurements from satellite sensors, or chemical-weather 

models. Surface particulate matter (PM) 2.5 measurements have been used most frequently 

[Liu et al., 2015], with satellite observations increasing in popularity as a method for 

assessing wildfire smoke exposure [Henderson et al., 2011; Rappold et al., 2011; Liu et al., 

2015]. Most recently, chemical-weather models have been used to simulate wildfire smoke 

exposure; studies employing this method to estimate smoke exposure have found an 

increased risk for respiratory-related morbidity [Alman et al., 2016; Liu et al., 2016b] and 

cardiovascular-related morbidity [Haikerwal et al., 2015]. While in situ measurements from 

surface monitors, satellite-based measurements, and simulations with chemical-weather 

models all have utility for estimation of wildfire smoke exposure, each method has inherent 

limitations. Surface in situ monitors offer sparse spatial coverage, and there is no 

information between individual monitors. Sensors on satellites often produce information 

about smoke (or other particulates) in the entire atmospheric column, not at the ground level. 

Further, retrievals often fail in the presence of clouds or extremely thick smoke. In chemical-

weather models, simulation of the movement and chemical processing of fire smoke is 

difficult [Garcia-Menendez et al., 2013; Alvarado et al., 2015; Saide et al., 2015; Baker et 

al., 2016; Paugam et al., 2016].
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Given the limitations of each of these exposure assessment methods, we previously proposed 

a novel application using all three of these methods in a blended model (also referred to as 

data fusion) to produce a more accurate estimation of surface-level wildfire smoke 

concentrations in our companion paper by Lassman et al. [2017], which describes the model 

and its performance. We implemented these methods in Washington state in late summer 

2012, a period when series of large and intense wildfires produced extensive smoke that 

impacted communities throughout the state. For this paper, we used this model to assess the 

relationship between various estimation methods for wildfire smoke exposure and 

cardiorespiratory-related hospital admissions in Washington state from 1 July to 31 October 

2012. Our objective was to determine if the choice of exposure model resulted in significant 

and meaningful differences in health risk estimates for a range of health endpoints.

2. Methods

2.1. Measures of Health Outcomes

Our study population consisted of persons who were admitted to a hospital in Washington 

state and were recorded in the Washington State Department of Health Comprehensive 

Hospital Abstract Reporting System (CHARS) for the year 2012. CHARS is a hospital 

admission data set that contains records for both inpatient and outpatient hospital 

admissions. Variables for our study included a unique deidentified patient identifier, patient-

level information on International Classification of Diseases, Ninth Revision, Clinical 

Modification (ICD-9-CM) diagnosis codes, date of admission and discharge, admission 

type, and reported ZIP code of residence, age, and sex. We limited the study population to 

admission dates between 1 July through 31 October 2012 and to reported ZIP codes of 

residence within Washington. We further limited our study population to admissions 

classified as either emergency or urgent care as these patients are most likely in need of 

immediate medical care due to a recent event (i.e., car accident) or exposure (i.e., smoke 

exposure). Finally, we limited our study population to subjects with only a single 

observation using the unique patient identifier to reduce potential bias and complexities of 

accounting for multiple adverse events.

Given the established relationship between air pollution with cardiopulmonary health 

outcomes [Miller et al., 2007; Brook et al., 2010], and in line with other studies evaluating 

the health effects of wildfire smoke [Johnston et al., 2007; Henderson et al., 2011; Rappold 

et al., 2011; Haikerwal et al., 2015; Liu et al., 2015, 2016b; Alman et al., 2016; Reid et al., 

2016], we assessed the following primary reported ICD-9-CM code within the 2012 CHARS 

data set as a proxy measure for an event: respiratory (ICD-9-CM: 460–519), asthma (ICD-9-

CM: 493), chronic obstructive pulmonary disease (COPD)(ICD-9-CM: 490–492, 494, and 

496), pneumonia (ICD-9-CM: 480–486), acute bronchitis (ICD-9-CM: 466), cardiovascular 

disease (ICD-9-CM: 390–459), arrhythmia (ICD-9-CM: 427), cerebrovascular disease 

(ICD-9-CM: 430–438), heart failure (ICD-9-CM: 428), ischemic heart disease (ICD-9-CM: 

410–413), and myocardial infarction (ICD-9-CM: 410). In addition, we also assessed 

fracture of radius and ulna (broken arm) (ICD-9-CM: 813) as an expected null outcome, 

hypothesizing that there would be no association with wildfire smoke exposure.
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2.2. Time-Stratified Case-Crossover Study Design

In the time-stratified case-crossover design, each subject's exposure value on an index date 

(e.g., admission date) is compared to subject-specific referent periods that are matched to the 

index date based on the same day of the week within a time period. This method controls for 

time-invariant confounding variables (e.g., age and sex) and reduces bias from any time 

trends in the exposure and time-varying factors (e.g., day of the week and seasonal trends in 

exposure) [Lumley and Levy, 2000; Janes et al., 2005a, 2005b]. For each of our defined 

health outcomes, we identified all cases within the CHARS data that met the criteria defined 

above, and we created time-stratified case-crossover data sets. Referent periods were 

selected on the same day of the week as the index period within the entire wildfire season of 

1 July to 31 October 2012. Estimations of smoke PM2.5 and meteorological measurements 

were linked to these case-crossover data sets using the reported ZIP code of residence.

2.3. Estimating Wildfire Smoke Exposure

2.3.1. Estimation of PM2.5 Attributed to Wildfire Smoke—Exposure assessment 

methods and performance statistics are described in full in Lassman et al. [2017]. Briefly, 

exposure data were obtained from multiple information sources from 1 July through 31 

October 2012. We created a grid such that simulated surface PM2.5 concentrations and other 

estimates of surface PM2.5 from both satellite and in situ measures were estimated for the 

same spatial location. We estimated daily average surface PM2.5 concentrations for each grid 

box using three distinct estimation methods:

1. Weather Research and Forecasting with Chemistry (WRF-Chem) chemical-
weather model: Daily PM2.5 concentrations were simulated using the Weather 

Research and Forecasting with Chemistry (WRF-Chem) model [Grell et al., 

2005]. Simulations were conducted at 15 km × 15 km resolution. The Fire 

Inventory from National Center for Atmospheric Research v1.5 was used to 

estimate biomass burning emissions [Wiedinmyer et al., 2011]. Additional 

simulations were conducted with biomass burning emissions turned off to 

estimate nonwildfire smoke PM2.5 concentrations. Details about other simulation 

parameters and settings are described in Lassman et al. [2017]. Performance 

statistics of WRF-Chem simulations compared to observed surface PM2.5 were 

as follows: estimated slope of the fitted trend line = 0.67, R2 = 0.25, mean 

absolute error = 11.45 μg/m3, and mean bias = 10.22 μg/m3 [Lassman et al., 

2017]. In this context, the slope of the fitted trend line describes a regression of 

the observations onto the model-predicted values; a value of less than one 

implies that the model overestimates PM2.5 concentrations.

2. Kriging of in situ surface monitors: Surface monitor PM2.5 concentration data 

were obtained from the Environmental Protection Agency Air Quality System 

(AQS) for Washington. Additional monitors were deployed during the smoke 

time period by the Washington Department of Ecology; these data were 

integrated into the surface network. We used Gaussian process regression (i.e., 

ordinary kriging) [Isaaks and Srivastava, 1988] to interpolate the measured PM2.5 

concentrations to our 15 × 15 km grid for the entire state. To reduce the potential 

for bias from edge effects [Jerrett et al., 2004], we obtained additional surface 
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monitor PM2.5 data from the AQS for Northern Oregon, Western Idaho, and 

Western Montana, as well as surface monitor PM2.5 for British Columbia, 

Canada (data provided by Dr. Sarah Henderson at the University of British 

Columbia School of Population and Public Health). There were a total of 212 

surface PM2.5 monitors in the region that were input to the kriging model. 

Because the surface monitors report values on varying temporal frequencies, the 

number of available measurements for each 24 h period varied; we use all 

available measurements on each day as input to the kriging approach, with a 

static semi-variogram. Leave-one-out cross validation was used to assess 

performance of the kriging approach compared to observed surface sites. The 

model was evaluated at each in situ measurement site that was inside the domain 

of interest (156 of the 212 total monitors) on every day that the site reported a 

value. Evaluation was not done at the boundary sites due to instabilities in 

kriging at these locations. The approach and justification are described in detail 

in Lassman et al. [2017]. Performance statistics of kriging were as follows: 

estimated slope of the fitted trend line = 0.70, R2 = 0.69, mean absolute error = 

2.09 μg/m3, and mean bias = 0.00 μg/m3 [Lassman et al., 2017]. The slope is less 

than one, but closer to one than the WRF-Chem estimates value, which implies 

improved slope compared to the WRF-Chem model.

3. Geographically weighted regression (GWR): Additional data were obtained on 

aerosol optical depth (AOD), a measure of the extinction of solar light by all 

particle types within the atmospheric column, from the Moderate Resolution 

Imaging Spectroradiometer instrument aboard the National Aeronautics and 

Space Administration (NASA) Terra and Aqua polar-orbiting satellites. GWR 

was used to estimate the expected PM2.5 concentrations of each grid box by 

combining the kriged in situ measurements, satellite aerosol optical depth 

(AOD), and simulated WRF-Chem estimations while accounting for 

multicollinearity and spatial variability [Brunsdon et al., 1998a, 1998b]. Leave-

one-out cross validation was used to assess model performance of the GWR 

compared to observed surface sites. Performance statistics for GWR were as 

follows: estimated slope of the fitted trend line = 0.78, R2 = 0.66, mean absolute 

error = 2.40 μg/m3, and mean bias = 0.37 μg/m3 [Lassman et al., 2017]. All of 

the exposure estimates were evaluated with an additional sensitivity analysis in 

the companion publication [Lassman et al., 2017].

To distinguish PM2.5 that may be attributed to wildfire smoke from other sources for the 

WRF-Chem method, we took our estimated daily average surface PM2.5 estimates for each 

grid box and subtracted estimates of nonsmoke PM2.5 produced by WRF-Chem. The 

contributions of nonsmoke sources to total PM2.5 in our study region were produced using 

WRF-Chem simulations where fire emissions were turned off. We refer to the difference in 

simulated PM2.5 between simulation with and without fire emissions as WRF-Chem smoke. 

To estimate PM2.5 that may be attributed to smoke for the kriging and GWR methods, we 

estimated background PM2.5 using the National Oceanic and Atmospheric Administration's 

(NOAA) Hazard Mapping System (HMS) to identify days where wildfire smoke was not in 

the vicinity of a surface monitor. We then calculated the median PM2.5 concentrations for 
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each surface monitor over the nonfire impacted days of the study period; these levels were 

then interpolated using kriging to each grid box to estimate background levels of PM2.5 

derived from nonwildfire sources. Finally, we subtracted these background levels from each 

method to produce estimates of PM2.5 that may be attributed to smoke. We refer to the 

estimates as kriging smoke and GWR smoke. All PM2.5 concentrations are reported in 

μg/m3.

2.3.2. ZIP Code Population-Weighted Average of PM2.5 and Census-Weighted 
Meteorological Measures—Each of our smoke variables was calculated as a population-

weighted average PM2.5 concentration at the ZIP-code level (to correspond to the resolution 

of our health outcome data) for each day within the study period. This approach weights the 

average of gridded PM2.5 concentrations according to the known population density within a 

given ZIP code. We used available measures of temperature, humidity, wind speed, and 

precipitation that were census weighted to the ZIP-code level. For more details on both these 

population-weighted methods, please see Text S1 in the supporting information.

2.4. Analyses

To describe the temporal variability of the three smoke estimates, we plotted time series of 

the daily range (minimum and maximum) of ZIP code population-weighted PM2.5 

concentrations for each Washington Department of Ecology Regional Office Jurisdiction. To 

visualize the spatial extent of the smoke exposure, we mapped counts of days impacted by 

smoke for each Washington ZIP code from 1 July to 31 October 2012, for which daily GWR 

PM2.5 concentration exceeding 10 μg/m3 within each ZIP code indicated a smoke day. GWR 

was chosen for this map as Lassman et al. found this method to be the most accurate 

compared to WRF-Chem or kriging [Lassman et al., 2017].

Total counts for emergency department or urgent care hospital admissions for each outcome 

that took place in Washington from 1 July to 31 October 2012 were calculated; proportions 

for each outcome-specific age and sex strata were calculated as well. We did not report age 

strata with less than 15 cases due to internal data protocols when using protected health 

information. Conditional logistic regression models with patient-specific strata were used to 

calculate the odds ratio (OR); the health outcome of interest was regressed on a continuous 

estimate of smoke PM2.5 (derived from the three smoke estimation methods) while adjusting 

for temperature, relative humidity, wind speed, and precipitation. Additional analyses were 

performed to evaluate lagged exposure days and effect modification by age and sex. For 

these analyses, we only compared the WRF-Chem smoke method to GWR smoke method so 

that the results were easier to view and interpret, and as Lassman et al. found kriging and 

GWR methods were similar in performance [Lassman et al., 2017]. Lagged analyses 

considered the time period from 0 to 5 days prior to admission. Analyses for age as a 

potential modifying factor in these associations were conducted for the following age 

groups: <15 years (some outcomes were not analyzed as there were less than 15 cases for 

this age group), 15 to 65 years, and >65 years; sex was also evaluated as a potential 

modifying factor.
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All data analyses were performed using R software [R Core Team, 2016]. Spatial-related 

functions used the “sp” [Pebesma and Bivand, 2005], “rgdal” [Bivand et al., 2016], and 

“rgeos” [Bivand and Rundel, 2016] packages. Maps were created using the “ggmap” 

package [Kahle and Wickham, 2013]. Plots were created using the “ggplot2” package 

[Wickham, 2009, p.2]. Conditional logistic regression models were implemented using the 

“survival” package [Terry M. Therneau, 2015]. R code used for this study is available at the 

project GitHub repository (https://github.com/RyanGan/washington_wildfire_2012).

All study procedures were approved by the Institutional Review Boards of Colorado State 

University and Washington State Institutional Review Board and Department of Health.

2.5. Data Availability

Smoke estimate and meteorological data sets can be found on the repository for our 

companion paper by Lassman et al. [2017] at http://hdl.handle.net/10217/179811. The 

Health Insurance Portability and Accountability Act precludes distribution of the health 

outcome data used in this analysis.

3. Results

3.1. Descriptive Results for Smoke and Hospital Admissions

Figure 1 shows the range of ZIP code population-weighted PM2.5 concentrations of smoke 

for each estimation method by Department of Ecology Region from 1 July to 31 October 

2012. In general, all time series plots showed a large increase in maximum smoke PM2.5 

starting in mid-September and extending through early-October. The central and eastern 

regions had the highest concentrations of smoke PM2.5, but the northwestern and 

southwestern regions also had elevated concentrations of smoke PM2.5. The maximum 

WRF-Chem smoke PM2.5 concentrations were also much greater at similar time points 

when compared to kriged and GWR smoke PM2.5 concentrations. On multiple occasions, 

WRF-Chem estimated elevated smoke concentrations for the eastern and southwestern 

regions that were not elevated for the kriged smoke or GWR smoke time series.

Figure 2 shows the number of days in Washington ZIP codes that were impacted by smoke 

from 1 July to 31 October 2012. Central and eastern Washington had the highest number of 

days impacted by smoke during this time, consistent geographically with the time series 

ranges in Figure 1 and the prevailing wind patterns in relation to the fire locations.

For all of 2012, there were a total of 730,970 hospital admission records in the CHARS data 

set. During the 1 July to 31 October 2012 wildfire season in Washington state, there was a 

total 248,647 admissions, of which 26,835 were hospital emergency departments or urgent 

care for the specified cardiopulmonary codes. The number of persons (cases), as well as age-

specific and sex-specific strata, that needed admission to an emergency department or urgent 

care with a cardiopulmonary primary diagnosis in Washington state from 1 July to 31 

October 2012 is presented in Table 1.
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3.2. Wildfire Smoke and Hospital Admission Results

Our main results are presented in Figure 3. A 10 μg/m3 increase in smoke PM2.5 on the same 

day of admission was significantly associated with an increase in hospital admissions for all 

respiratory outcomes using our three smoke estimation methods: WRF-Chem smoke (OR: 

1.024, 95% confidence interval (CI): 1.002–1.046), kriging smoke (OR: 1.066, 95%CI: 

1.033–1.100), and GWR smoke (OR: 1.052, 95%CI: 1.025–1.080) (Figure 3). Similarly, a 

10 μg/m3 increase in smoke PM2.5 was significantly associated with an increase in asthma 

hospitalizations: WRF-Chem smoke (OR: 1.100, 95%CI: 1.059–1.142), kriging smoke (OR: 

1.086, 95%CI: 1.016–1.161), and GWR smoke (OR: 1.076, 95%CI: 1.019–1.136) (Figure 

3). However, the three smoke-estimation methods did not produce consistent results for 

other health outcomes. For COPD, no significant association was observed with WRF-Chem 

smoke (OR: 0.986, 95%CI: 0.931–1.045), but significant associations were observed with 

kriging (OR: 1.106, 95%CI: 0.931–1.045), and GWR (OR: 1.084, 95%CI: 1.026–1.145) 

methods (Figure 3). For pneumonia, no significant association was observed with WRF-

Chem smoke (OR: 1.019, 95%CI: 0.980–1.059) and GWR smoke (OR: 1.051, 9%CI: 0.999–

1.105) methods, but significant associations were observed with kriging smoke estimates 

(OR: 1.069, 95%CI: 1.009–1.133). Conversely, a significant association was observed 

between the WRF-Chem smoke method and cerebrovascular disease hospital admissions 

(OR: 1.037, 95%CI: 1.006–1.069) that was not observed with kriging smoke (OR: 1.009, 

95%CI: 0.959–1.061) or GWR smoke (OR: 1.011, 95%CI: 0.969–1.054) methods (Figure 

3); no association was observed between estimates of smoke PM2.5 and other cardiovascular 

outcomes or broken arm (Figure 3).

3.3. Lagged Smoke Exposure

Model results for lag effects (0–5; 0 = same day, 5 = 5 days following exposure) for 

associations between smoke PM2.5 and cardiopulmonary hospital admissions are presented 

in Figure 4 for both WRF-Chem and GWR smoke estimation methods. GWR smoke 

estimates were consistently associated with increases in “all respiratory” admissions across 

all six lag days (0 = OR: 1.052, 95%CI: 1.025–1.080; 1 = OR: 1.043, 95%CI: 1.014–1.072; 

2 = OR: 1.042, 95%CI: 1.013–1.071; 3 = OR: 1.051, 95%CI: 1.025–1.078; 4 = OR: 1.038, 

95%CI: 1.011–1.065; and 5 = OR: 1.030, 95%CI: 1.003–1.058). Similar estimates made 

using WRF-Chem smoke were associated with respiratory admissions on four of the six lag 

days: 0 (OR: 1.024, 95%CI: 1.002–1.046), 1 (OR: 1.023, 95%CI: 1.002–1.044), 4 (OR: 

1.026, 95%CI: 1.004–1.047), and 5 (OR: 1.022, 95%CI: 1.001–1.045) (Figure 4). For 

asthma-only admissions, GWR smoke was significantly associated on days 0 (OR: 1.076, 

95%CI: 1.019–1.136), 2 (OR: 1.068, 95%CI: 1.026–1.113), 3 (OR: 1.080, 95%CI:1.021–

1.142), 4 (OR: 1.058, 95%CI: 1.002–1.117), and 5 (OR: 1.080, 95%CI: 1.019–1.144), where 

WRF-Chem smoke was associated on all lagged days (0 = OR: 1.100, 95%CI: 1.059–1.142; 

1 = OR: 1.073, 95%CI: 1.035–1.113; 2 = OR: 1.061, 95%CI: 1.020–1.103; 3 = OR: 1.059, 

95%CI: 1.019–1.100; 4 = OR: 1.066, 95%CI: 1.026–1.109; and 5 = OR: 1.068, 95%CI: 

1.026–1.113) (Figure 4). For COPD admissions, GWR smoke was associated on lagged days 

0 (OR: 1.084, 95%CI: 1.026–1.145), 1 (OR: 1.068, 95%CI: 1.008–1.132), and 4 (OR: 1.070, 

95%CI: 1.010–1.134), where WRF-Chem smoke was not associated on any lagged days 

(Figure 4). For pneumonia admissions, GWR smoke was significantly associated on lagged 

day 3 (OR: 1.060, 95%CI: 1.016–1.106), where WRF-Chem smoke was not associated on 
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any lagged days (Figure 4). For GWR smoke a significant increased risk in arrhythmia 

admissions was observed on lagged days 1 (OR: 1.045, 95%CI: 1.000–1.091), 2 (OR: 1.046, 

95%CI: 1.000–1.093), and 3 (OR: 1.044, 95%CI: 1.004–1.085), where for WRF-Chem 

smoke no association was observed (Figure 4). For the remaining outcomes, no significant 

associations with lagged smoke PM2.5 were observed, including broken arm (Figure 4).

3.4. Stratified Estimates/Effect Modification

The association between increasing smoke PM2.5 estimated using WRF-Chem smoke and 

GWR smoke for cardiopulmonary hospital admissions stratified by age categories is 

presented in Figure 5. We did not estimate associations for the outcomes of COPD, 

arrhythmia, cerebrovascular disease, heart failure, ischemic heart disease, and myocardial 

infarction for the <15 age category as there were under 15 cases for this study period, which 

we suppressed due to data protocols for using protected health information. For the outcome 

of all respiratory admissions, GWR smoke was associated in the <15 age category (OR: 

1.069, 95%CI: 1.001–1.141) and >65 age category (OR: 1.057, 95%CI: 1.018–1.097), where 

WRF-Chem smoke was associated only in the <15 age category (OR: 1.057, 95%CI: 1.009–

1.109) (Figure 5). For asthma admissions, GWR smoke was significantly associated with 

PM2.5 only within the >65 age category (OR: 1.173, 95%CI: 1.003–1.370), where WRF-

Chem smoke was associated for all three age categories (<15 = OR: 1.113, 95%CI: 1.048–

1.182; 15–65 = OR: 1.095, 95%CI: 1.031–1.163; and >65 = OR: 1.094, 95%CI: 1.007–

1.188) (Figure 5). For COPD, the association with smoke PM2.5 was significant only within 

the age category >65 (OR: 1.061, 95%CI: 1.029– 1.160) (Figure 5).

The association between increasing smoke PM2.5 estimated using WRF-Chem smoke and 

GWR smoke and cardiopulmonary hospital admissions for sex strata is presented in Figure 

6. For the outcome of all respiratory admissions, the association with GWR smoke was 

similar between males (OR: 1.055, 95%CI: 1.018–1.094) and females (OR: 1.048, 95%CI: 

1.008–1.090), where WRF-Chem smoke was not associated in either sex strata (Figure 6). 

For asthma admissions, GWR smoke was not associated in either sex strata, while WRF-

Chem smoke was associated and was similar between males (OR: 1.113, 95%CI: 1.052–

1.179) and females (OR: 1.090, 95%CI: 1.036–1.46) (Figure 6). For COPD admissions, 

associations with GWR smoke were observed in the male strata (OR: 1.102, 95%CI: 1.026–

1.182) but not the female strata (OR: 1.056, 95%CI: 0.966–1.155); WRF-Chem smoke was 

not associated with COPD admissions in either sex strata (Figure 6). For acute bronchitis 

admissions, associations with GWR smoke were observed in the male strata (OR: 1.340, 

95%CI: 1.061– 1.692) but not the female strata (OR: 0.714, 95%CI: 0.475–1.073); WRF-

Chem smoke was not associated with acute bronchitis admissions in either sex strata (Figure 

6). For cardiovascular disease admissions, associations in males were observed for WRF-

Chem smoke (OR: 1.023, 95%CI: 1.000–1.046) and GWR smoke (OR: 1.029, 95%CI: 

1.000–1.059) was associated; no such associations were observed in females (Figure 6). 

WRF-Chem smoke was associated with cerebrovascular disease admissions in males (OR: 

1.046, 95%CI: 1.004–1.090) (Figure 6).

Gan et al. Page 9

Geohealth. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Discussion

Our results indicate significant positive associations between increased PM2.5 concentrations 

attributable to wildfire smoke and risk of hospital admissions for asthma, and COPD, and 

the all respiratory outcome category. Our findings were robust for asthma and all respiratory 

outcomes for all three methods of estimating smoke exposure; these findings are consistent 

with other reports of adverse respiratory outcomes following wildfire smoke exposure, 

regardless of the smoke exposure estimation method used [Johnston et al., 2007; Henderson 

et al., 2011]. Likewise, no associations were found between broken arm hospital admissions 

and the three methods of estimating smoke exposure, as expected. However, differing results 

were observed for COPD admissions, where we did not see an association with WRF-Chem 

smoke method but saw an increased risk using the kriging smoke and GWR smoke method. 

As for cardiovascular outcomes, we did not find any significant associations with wildfire 

smoke exposure, with the following exception: we observed a significant association 

between smoke estimated using the WRF-Chem smoke method and cerebrovascular disease 

that was not observed for the other smoke estimation methods, suggesting a spurious 

finding.

One possibility that may explain our differing results could be our methods for attempting to 

parse out PM2.5 from wildfire smoke versus other sources. For WRF-Chem smoke, we 

attempted to estimate background PM2.5 by running the simulation without the fire 

emissions option. However, for the kriging and GWR smoke methods, we estimated 

background PM2.5 concentrations by kriging the surface monitoring data on non-smoky days 

as identified by the NOAA HMS. We believe our attempt to parse out PM2.5 due to wildfire 

smoke versus other sources did not overly influence our results as we treated smoke as a 

continuous variable in our conditional logistic regression models, where the estimated OR 

was likely driven by the higher PM2.5 values due to wildfire smoke. Other studies have 

attempted to distinguish smoke PM2.5 by creating a binary smoke variable, such as when 

there were >2 days above varying PM2.5 thresholds [Liu et al., 2016b], or through time 

period restrictions known to be impacted by smoke [Alman et al., 2016]. Our methods 

allowed us to estimate smoke PM2.5 over a longer time period, thereby increasing our 

outcome sample size. Our methods also retained the information of continuous values while 

distinguishing smoke versus nonsmoke contributions to PM2.5, rather than creating binary 

smoke exposures that can result in a loss of information regarding any concentration-

response relationship.

Exposure misclassification may also explain the differences in odds ratios associated with 

our three exposure methods. In our complement paper, WRF-Chem simulations were less 

precise and less accurate at estimating surface measurements of PM2.5 (estimated slope of 

fitted trend line = 0.67, R2 = 0.25, mean absolute error = 11.45 μg/m3, and mean bias = 0.22 

μg/m3) compared to both kriging (estimated slope of fitted trend line = 0.70, R2 = 0.69, 

mean absolute error = 2.09 μg/m3, and mean bias = 0.00 μg/m3) and GWR estimates 

(estimated slope of fitted trend line = 0.78, R2 = 0.66, mean absolute error = 2.40 μg/m3, and 

mean bias = 0.37 μg/m3) [Lassman et al., 2017]. Our time series results (Figure 1) also 

indicated that WRF-Chem smoke tended to overestimate surface-level concentrations as 

compared to both kriging smoke and GWR smoke methods. WRF-Chem smoke also 
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indicated smoke exposure in late July for eastern Washington that was not corroborated by 

the kriging smoke or GWR smoke methods (Figure 1). Both the tendency to estimate higher 

concentrations of PM2.5 and estimating possible smoke exposure when there was none is a 

strong indication that WRF-Chem estimates lead to exposure misclassification to a greater 

degree than the other two methods.

The kriging and GWR methods were also subject to exposure misclassification, but to a 

lesser degree as they provided better predictions of observed results at surface monitors 

[Lassman et al., 2017]. These two methods also produced relatively similar consistent 

associations with the various cardiopulmonary outcomes studied herein. This is likely 

because the kriging estimates of PM2.5 performed well in Washington state during the 2012 

wildfire season, as additional in situ monitors were deployed by Washington Department of 

Ecology to provide better spatial coverage of PM2.5 concentrations over this period 

[Lassman et al., 2017]. Because of the extensive spatial coverage of in situ monitors, the 

kriging and GWR estimates produced essentially the same results as the kriging estimates 

carried the most weight in the GWR models that used information from the kriging in situ 

estimates, WRF-Chem model estimates, and satellite AOD [Lassman et al., 2017].

Other studies of wildfire smoke exposure and cardiopulmonary health outcomes have also 

reported conflicting results [Liu et al., 2015; Reid et al., 2016], and these inconsistencies 

may be the result of varying methods of exposure assessment. For instance, in an evaluation 

of counts of hospitalizations in North Carolina, USA, Rappold et al. assigned county-level 

smoke exposure using satellite aerosol optical depth and found no association when 

evaluating all cardiovascular hospitalizations [Rappold et al., 2011]. However, when 

specified to heart failure Rappold et al. found a significant increase in hospitalizations 

associated with smoke exposure [Rappold et al., 2011]. Likewise, in a time-stratified case-

crossover study using a ground-based monitors Johnston et al. found no association between 

increases (in PM10) and cardiovascular hospitalizations during a smoke event [Johnston et 

al., 2007]. However, in the same study, they reported that increases in PM10 concentrations 3 

days prior significantly increased indigenous persons' risk for ischemic heart disease (IHD) 

hospitalizations but same-day increases in PM10 significantly decreased risk for 

hospitalizations in nonindigenous persons [Johnston et al., 2007]. In a more recent time-

stratified case-crossover study using a chemical-weather model, Haikerwal et al. found 

increases in both out-of-hospital cardiac arrests and IHD hospitalizations in persons ≥65 

years of age with increasing concentrations of PM2.5 [Haikerwal et al., 2015]. When 

stratified by sex, Haikerwal et al. found that only males had an increased risk of out-of-

hospital cardiac arrests and only females had an increased risk in IHD [Haikerwal et al., 

2015]. In a study that used surface monitors, an atmospheric dispersion model, and satellites, 

varying effects were found for cardiovascular physician visits, where persons age 40 to 50 

were more likely to have an admission for increases in concentrations of PM10 assessed 

using the in situ and dispersion model, but not by satellite [Henderson et al., 2011]. Like 

other studies, exposure misclassification and conflicting results in our study were not limited 

to cardiovascular outcomes, speaking to the larger problem of exposure misclassification in 

general.
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An additional source of exposure misclassification is our use of reported ZIP code of 

residence to assign smoke exposure. This type of exposure misclassification is inherent in air 

pollution epidemiology based on retrospective admissions or billing data, in which ecologic-

level exposure (i.e., reported ZIP code of residence) is used as a proxy for individual-level 

exposure (i.e., personal PM monitor). However, it is unlikely that this type of exposure 

misclassification was the main driving factor behind our results, as the case-crossover design 

compared within-subject variability of exposure.

Exposure misclassification may persist when relying on reported ZIP code of residence as 

our finest spatial resolution. We were unable to obtain finer resolution of residential location 

such as address, which is often the case when using hospitalization records. We addressed 

this issue by population-weighting the average daily PM2.5 in each ZIP code to reduced the 

impact of exposure misclassification. This method likely had the most benefit in the spatially 

larger ZIP codes in rural areas with sparse populations, which were also most impacted by 

wildfire smoke. Although this method of population-weighting the average exposure 

estimate within a spatial boundary likely reduces exposure misclassification, future work 

based on reported residential address will likely provide the most informative and unbiased 

estimate of the true association between wildfire smoke and cardiopulmonary outcomes. 

Further refinements may also consider the location of the admitting hospital in exposure 

assignment, as most patients are likely admitted to the closest hospital when seeking 

emergency or urgent medical care.

With regard to effect modification, there were some differences in associations with smoke 

exposure and asthma hospital admissions depending on age strata. We observed a significant 

association between asthma and GWR smoke for >65 categories. Our results are consistent 

with other literature that suggests that older persons may be more susceptible to adverse 

health outcomes due to inhaled exposures [Gouveia, 2000; Pope et al., 2002; Kan et al., 

2008]. However, for the same outcome, WRF-Chem smoke was associated across all age 

categories. Furthermore, some of our null results could be the result of small sample sizes 

and not necessarily due to an age effect. We also found some evidence of effect modification 

by sex, particularly for smoke exposure on the outcome of cardiovascular disease in males as 

both WRF-Chem smoke and GWR smoke produced similar estimates. However, we suggest 

a cautious interpretation for our stratified results, as they were not always consistent between 

smoke estimation methods. Furthermore, there were trends of an increased risk of a broken 

arm admission in females for both smoke estimation methods that raise some concerns of 

the validity of our effect modification results. Given that both estimation methods showed 

this increased risk, it suggests that some other underlying factors may explain these results, 

such as the selection of our referent days. Likewise, our evaluation of lagged periods of 

smoke exposure produces some differing results depending on smoke estimation method 

used. The most interesting pattern observed for the lag periods was with arrhythmia, where 

the GWR smoke method suggested that perhaps there was an increased risk of 

hospitalization a couple days after exposure to smoke, while the WRF-Chem smoke method 

showed null associations. However, like our assessments of age and sex modification we 

advise a cautious interpretation of these results. Further evaluation of lagged effects and 

effect modification by age and sex on the relationship between smoke exposure and 
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cardiopulmonary morbidity in multiple studies with larger sample sizes will be necessary to 

draw any definitive conclusions.

The use of hospital admission claim data has several limitations, including misclassification 

of outcomes. In the case of our work, ICD-9-CM diagnosis codes were used as the primary 

way to identify proxy measures of the health outcome of interest. However, ICD-9 codes 

were originally designed for billing purposes. Therefore, their use as accurate proxy 

measures for health outcomes depends on many factors at the patient, provider, and health 

care system level [O'Malley et al., 2005]. Our decision to limit our case definition to only to 

the primary ICD-9 code reduced our sample size of each cardiopulmonary condition but 

should also have reduced our misclassification of cases [O'Malley et al., 2005]. Additionally, 

we also limited our case definition to include only emergency department or urgent care 

admissions to eliminate patients who sought elective care, which likely resulted in an 

underestimation of the true relationship between wildfire smoke and adverse 

cardiopulmonary events. Despite these limitations, the strength of administrative claim data 

in the study of environmental exposures that affect sparsely populated area over a short 

window of time (i.e., wildfire smoke) is that these data provide enough events for 

sufficiently powered analysis.

Another limitation of using administrative data is the lack of information on potential 

confounding factors. However, our use of a time-stratified case-crossover design controlled 

for subject-specific confounding factors that do not change over short periods of time or at 

all (e.g., smoking, comorbidities, sex, and age); thus, our cases serve as their own control. 

Further, the time-stratified design has benefits relative to other case-crossover referent 

selection strategies in that time-varying confounding effects such as day of the week or 

seasonal trends in PM2.5 are also accounted for in the design [Janes et al., 2005a, 2005b]. In 

general, case-crossover studies are most appropriate when used to evaluate associations 

between acute exposures (e.g., wildfire smoke) and acute outcomes (e.g., asthma), and their 

application with conditions that do not resolve (e.g., heart failure or mortality) may not be 

appropriate.

In addition, based on design, case-crossover studies create unobserved referent observations, 

assuming that the case did not have an event on those additional dates. The time-stratified 

case-crossover design reduces bias from both time-varying and time-invariant confounding 

compared to some other referent selection strategies such as symmetric-bidirectional 

[Lumley and Levy, 2000; Janes et al., 2005a, 2005b]. However, the time period for which the 

referent periods are to represent must still be selected in a way that balances two main 

considerations: (1) minimizing bias from time-varying confounding (i.e., seasonal effects), 

which can be achieved by selecting referent periods closer in time to the index date [Janes et 

al., 2005b], and (2) considering if the number of referent periods is adequate to capture the 

heterogeneity of the exposure while maintaining a sufficiently powered sample size [Janes et 

al., 2005b]. These two considerations played an important role in our selection of referent 

periods, as smoke PM2.5 concentrations varied greatly in time where extremely high 

concentrations were observed for a week or more. In an effort to average out these extreme 

periods so that they are more representative of normal PM2.5 concentrations, we used a 

referent period selection strategy that included each same-day period as the index date over 
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the entire wildfire season from 1 July to 31 October. This strategy also provided sufficient 

statistical power.

Another limitation when using case-crossover designs is accounting for patients that may 

have multiple admissions within the referent time period. In this analysis, we excluded 

patients with multiple admissions (indicated by the patient identifier variable) for the same 

outcome over the wildfire season. In a case-crossover analysis that uses conditional logistic 

regression, patients with multiple admissions violate regression model assumptions that 

there is only one event for each case [Janes et al., 2005a]. However, we may have also 

eliminated those with the highest likelihood of morbidity, indicated by multiple emergency 

or urgent encounters with the health care system. Future work will address how to 

incorporate multiple observations per patient in the case-crossover design.

The case-crossover design is best suited for studying the relationship between a short-term 

exposure and acute outcome that resolves, which explains why our study and others 

consistently observe associations with asthma or other acute events. However, given our 

varying associations between smoke and cardiovascular outcomes in our study and others, it 

remains unclear whether smoke has any short-term effect on cardiovascular hospital 

admissions. The effects of smoke on cardiovascular disease may produce long-term effects. 

However, time-stratified case-crossover or time series designs are not well suited for this 

application.

To date, evaluation of the health effects due to wildfire smoke that use a continuous 

concentration of PM2.5 has generally assumed a linear relationship. The relationship 

between ambient anthropogenic levels of air pollution PM and adverse health outcomes 

generally exhibits a linear exposure concentration-response relationship, where risk for 

adverse health events increases linearly as concentrations of PM increase [Daniels et al., 

2000; Dominici et al., 2002, 2005; Pope et al., 2002, 2009; Samoli et al., 2004]. This linear 

relationship has been assumed in current studies on wildfire smoke, including herein. 

However, there is evidence that suggests a nonlinear relationship between adverse health 

outcomes and inhaled particulate matter, where the concentration-response is relatively steep 

at low levels of PM but begins to level out at higher levels [Pope et al., 2009]. This nonlinear 

response could be relevant for wildfire smoke, as concentrations, while not as high as 

inhaled cigarette smoke, are still much higher than background levels of PM. Future work 

should determine the shape of the concentration-response function for cardiopulmonary 

outcomes, and if the response differs depending on the pollution source (wildfire smoke 

versus anthropogenic).

We found a significant relationship between exposure to wildfire smoke PM2.5 and an 

increase in the risk for hospital admission for the pulmonary outcomes asthma, COPD, and 

pneumonia. Our results also suggest that a blended estimate of smoke using information 

from surface monitors, satellites, and chemical-weather models is a robust approach in 

quantifying population exposure to wildfire smoke that will be useful in reducing exposure 

misclassification for epidemiologic studies. From a public health perspective, our results 

contribute further evidence linking wildfire smoke to adverse health outcomes to the existing 

literature. Wildfires place a significant burden on states from a disaster preparedness 
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standpoint where the initial wildfire can be destructive to property and dangerous to human 

life. However, from a broader public health standpoint, there is also potential for population-

level exposure that could lead to increased strain on the health care system due to the 

resulting smoke. Our work and the work of others can help guide the planning and 

preparation of health care systems and public health agencies during future wildfire events.
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Key Points

• Geographically weighted regression combines measures of wildfire smoke 

from many sources that can be used in epidemiologic studies

• Wildfire smoke estimated using geographically weighted regression was 

associated with increased risk for respiratory outcomes

• Geographically weighted regression is a useful approach that can reduce 

exposure misclassification in epidemiologic studies
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Figure 1. 
Time series of the range (minimum to maximum) of ZIP code population-weighted PM2.5 

concentrations of wildfire smoke from 1 July to 31 October 2012 for WRF-Chem smoke, 

kriging smoke, and geographically weighted ridge regression (GWR) smoke by ecology 

region.
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Figure 2. 
Counts of days in each ZIP code impacted by smoke in Washington from 1 July to 31 

October 2012. A smoke day is any day where GWR smoke population-weighted PM2.5 was 

>10 μg/m3. Smoke counts were not estimated for some areas on the map (indicated in white) 

as there were no events reported at these ZIP codes.
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Figure 3. 
Association between a 10 μg/m3 increase in smoke PM2.5 (using three estimation methods) 

and risk for a cardiopulmonary emergency department or urgent care hospital admission, 

adjusting for temperature, relative humidity, wind speed, and precipitation.
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Figure 4. 
Lag analysis (0–5 days) for associations between a 10 μg/m3 increase in smoke PM2.5 (using 

either WRF-Chem smoke or GWR smoke) and risk for a cardiopulmonary emergency 

department or urgent care hospital admissions.
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Figure 5. 
Age-stratified association between a 10 μg/m3 increase in WRF-Chem smoke and GWR 

smoke PM2.5 and risk for a cardiopulmonary emergency department or urgent care hospital 

admission, adjusting for temperature, relative humidity, wind speed, and precipitation.
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Figure 6. 
Sex-stratified association between a 10 μg/m3 increase in WRF-Chem smoke and GWR 

smoke PM2.5 and risk for a cardiopulmonary emergency department or urgent care hospital 

admission, adjusting for temperature, relative humidity, wind speed, and precipitation.
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